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ABSTRACT This paper provides transcendental and alge-
braic framework for the classification of identities expressing p
and other logarithms of algebraic numbers as rapidly convergent
generalized hypergeometric series in rational parameters. Alge-
braic and arithmetic relations between values of p11Fp hyper-
geometric functions and their values are analyzed. The existing
identities are explained, and new exhaustive classes of new ones
are presented.

1. Introduction

This paper is devoted to the exposition of the algebraic relations
between generalized hypergeometric functions and algebraic
functions and their logarithms. We strive to explain some of the
newly found identities expressing p (and not 1yp as in ref. 1) as
rapidly convergent generalized hypergeometric series in rational
parameters, discovered by W. Gosper and others (2). In our
explanation, identities expressing logarithms of algebraic num-
bers (with the most notable examples of p, ln 2, ln 3) in terms of
generalized hypergeometric functions can be classified by using
transcendental and algebraic means. On a simpler, transcenden-
tal level, the classification involves an easy problem of determi-
nation of all cases, when solutions of generalized hypergeometric
equations are expressible in term of logarithms of algebraic
functions only. This immediately leads to a finite set of irreducible
cases described by extensions of finite reflection groups, and one
to a multiparameter case. On a relatively complicated algebraic
level, the classification provides the explicit algebraic equations
on algebraic functions, whose logarithms are involved in the
identities. Additionally, the algebraic formalism provides with
arithmetic conditions that explicitly describe all allowed identities
for logarithms of specific numbers. These last arithmetic condi-
tions take the form of multiplicative relations among roots of
algebraic equations; in the most interesting multiparameter case
these algebraic equations are trinomials of arbitrary degrees.

We describe all of the formalisms above, including explicit
algorithms of the classification problem and closed form expres-
sions for low degree cases. We also list some of the most
interesting identities for simpler logarithms (p, ln 2, ln 3) in terms
of generalized hypergeometric series with coefficients that are
ratios of binomial coefficients. Among other things we show that
though there is a finite classification of ‘‘irreducible’’ identities,
each identity generates an infinite family of ‘‘reducible’’ series
identities, whose convergence increases at the expense of the
increased order of hypergeometric functions.

This paper deals primarily with extensions of Schwarz’s list for
2F1 series and nFn21 series that have coefficients as products of
simple binomial functions of indices and are defined over inte-
gers. We postpone for another paper the explicit description of
the remaining 20-plus cases of individual finite reflection groups

that describe specific hypergeometric functions and involve alge-
braic numbers of higher degrees.

There are other classical and Gosper’s identities that involve
generalized hypergeometric functions depending on a free pa-
rameter expressing ratios of G functions of this parameter. Many
of these identities also can be covered by formalisms presented in
this paper, including the analysis of extensions of reducible
generalized hypergeometric equations, and hypergeometric se-
ries with coefficients that are products of special G functions of
indices.

At the end of the paper we list some of the more interesting
(series of) identities for lower order hypergeometric functions,
and we present an application that provides a measure of irra-
tionality. More diophantine applications can be derived from the
‘‘master formula’’ (Eq. 11).

2. Hypergeometric Equations

We refer to ref. 3 for basic definitions of classical (univariate)
generalized hypergeometric functions pFq of parameters
ai, bj : i 5 1 . . . p; j 5 1 . . . q and a variable z:

pFq~a1 . . . ap; b1 . . . bquz! 5 O
N50

` ~a1!N · · · ~ap!N

N!~b1!N · · · ~bq!N
z zN.

Here (a)N is the Pochhammer symbol: (a)0 5 1, (a)N 5 a z z z (a 1
N 2 1). In addition to their importance as special functions, these
generalized hypergeometric functions and their immediate mul-
tivariate generalizations are suspected to be able to describe all
linear differential equations with ‘‘arithmetic’’ properties—
having solutions that are G–functions in Siegel’s sense (that is,
having series expansions with algebraic coefficients with slowly
growing denominators) see ref. 4. Generalized hypergeometric
equations are among few classes of linear differential equations
that do not depend on accessory parameters, and the monodromy
(Galois) group can be determined explicitly in terms of param-
eters ai, bj.

New identities for values of logarithms of algebraic numbers,
including p, in term of generalized hypergeometric functions, can
be classified, provided they are imbedded into a one-parameter
family of functional identities, involving a logarithm and gener-
alized hypergeometric functions. For such a functional identity to
occur, the differential operator, annulling corresponding hyper-
geometric functions have to be reducible over a ring of differential
operators with algebraic function coefficients. This condition of
reducibility, expressed through the properties of the monodromy
group of the generalized hypergeometric equations, allows one to
classify all possible cases of functional identities expressing log-
arithms of algebraic functions through generalized hypergeomet-
ric functions. The most famous class is related to Schwarz’s list of
algebraic functions among Gauss’ 2F1 hypergeometric functions.

In this paper we concentrate only on a subclass of hypergeo-
metric identities that can be written by using binomial coefficientsThe publication costs of this article were defrayed in part by page charge
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(that is, B factors, rather than more general G factors). These
identities involve only hypergeometric sums of the form

O
i51

k P
i51

k SKin
Lin

DMi

z xn,

where Ki, Li and Mi are integers (and Ki, Li are positive). For
generalized hypergeometric functions with parameters ai, bj this
means that all ai, bj are rational and if one has ai0 [ p

q
(mod 1) for

(p, q) 5 1 then among ai there are all r
q

(mod 1) for all r, (r, q) 5
1. These conditions severely restrict algebraic cases under consid-
eration. Two of the most interesting classes of examples in this
series correspond to the dihedral Dn and symmetric Sn groups.
From the point of view of diophantine approximations one would
like to keep the order of the hypergeometric functions low and
their rate of convergence high (i.e., Mi should be negative).

We start with reducible equations arising from 2F1 functions.
The first nontrivial case corresponds to a series

y~x! 5 O
n50

` ~a1!n~a2!n

~b1!n~b2!n
xn 5 3F2~a1, a2, 1; b1, b2ux!. [1]

These functions, though 3F2, satisfy inhomogeneous second-
order differential equations, and can be integrated in terms of the
fundamental solution of the Gauss hypergeometric functions with
parameters a 5 a1 2 b2 1 1, b 5 1 1 a2 2 b2, c 5 1 1 b1 2 b2.

For the dihedral group case this means that we are dealing with
representations of algebraic functions (1 1 =z)1yn or (1 1
=1 2 z)1yn. Keeping in mind the requirement of binomial coef-
ficient representation, we end up only with three possible cases of
functions (Eq. 1):

a1 5 1, a2 5 1y2; b1 5 1y4, b2 5 3y4 [2]

a1 5 1, a2 5 1y2; b1 5 1y3, b2 5 2y3 [3]

a1 5 1, a2 5 1y2; b1 5 1y6, b2 5 5y6. [4]

In these cases explicit integration of the corresponding dihedral
equations gives a closed form expression between two logarithms
of algebraic functions and y(x). Differentiating these expressions
one gets a set of two equations for y(x) and y9(x) involving these
two logarithms. This allows us to express each logarithm as a
linear combination of y(x) and y9(x). This provides two families of
identities (typically for logarithms and arctan) as sums of rapidly
convergent binomial series. The cases Eqs. 3 and 4 are new. The
case Eq. 2 had been originally derived by Gosper (2) in 1990 in
a very interesting form. According to our classification below, this
is a ‘‘reducible’’ case, and with some tedious algebra one can
recover its expression from classically known series for arcsin(xy
2), arcsinh(xy2).

Let us start with the case Eq. 3. The relevant parametrization
of x in terms of a new variable T is the following: x 5 (4T3)y(T3

1 1)2. Then y(x) is a linear combination over Q of two functions
of T f1(T) 5 (T z (T 1 1)y(T3 1 1)) z ln((T2 2 T 1 1)y(T 1 1)2),
f2(T) 5 =3 (T z (T 2 1)y(T3 1 1)) z arctan((2T 2 1)y(=3)).

This allows us to represent fi(T) : i 5 1, 2 as a linear combination
of y(x), y9(x) over Q(x). Choosing rational values of x that
correspond to important logarithms like p or ln 2 one gets
interesting families of identities (see below). Two identities cor-
responding to y(x) and y9(x) at x 5 2

27
are the most important,

because they allow us to prove measures of diophantine approx-
imations to p. The fastest convergent identity we present in this
series corresponds to x 5 2 2

27
.

In the case Eq. 4 we are looking at Schwarz’ list entry (1y2, 1y2,
2y3). The uniformization variable T allows us to express the
corresponding y(x) as a linear combination of two logarithmic
functions f1(T), f2(T) over Q(x): x 5 (4 z T3)y(T3 1 1)2, f1(T) 5
(=3 z (T2 1 1)=Ty(T3 1 1)) ln((T 2 =3 =T 1 1)y(T 1 =3

=T 1 1)), f2(T) 5 ((T2 2 1)=Ty(T3 1 1)) z arctan((T2 2 4T 1
1)y(3=T (T 2 1)).

This allows us to represent fi(T) : i 5 1, 2 as a linear combination
of y(x), y9(x) over Q(x). Two of the most interesting values are x 5
2
7

and a very spectacular x 5 1
3888

(giving the fastest convergent
hypergeometric series for ln 2). These identities are presented at
the end of the paper.

All other Schwartz cases of the dihedral group give rise to
the function y(x) in Eq. 1 whose coefficients cannot be
represented as products of binomials.

For generalized hypergeometric equations of an arbitrary
order, there is only one infinite sequence of equations having
algebraic solutions only (with the monodromy group as a sym-
metric group Sn). Up to the obvious transformations, this se-
quence of functions is described completely by algebraic function
solutions to trinomial algebraic equations, as covered below in the
master formula. In addition there is a finite set of exceptional
equations with finite reflection Galois groups, see ref. 5. If, as
before, we restrict ourselves only to hypergeometric series whose
coefficients are products of factors of binomial coefficients, than,
in addition to the cases mentioned above, there are 26 additional
nFn21 hypergeometric functions that have to be considered for n
in 4 . . . 8, requiring cyclotomic extensions of Q. We return to
explicit expressions for these exceptional cases in another publi-
cation.

Note that in the cases above, as everywhere else in this paper,
one can exchange parameters ai and bj (this corresponds to
expansion near ` rather than near 0). Very often this ‘‘exchanged
series’’ is not desirable because the rate of convergence of
corresponding ‘‘exchanged’’ series drops dramatically. For exam-
ple, series corresponding to logarithms of solutions yk of the
trinomial equation yn 2 Tys 2 1 5 0 that follow from the master
formula are contiguous to the series ¥N51

` ((21)n2sTn)Ny(Ns
Nn)—

corresponding to (relatively) small T, whereas ‘‘exchanged’’ series
relate logarithms of yk in terms of ¥N51

` (Ns
Nn)yN z ((21)n2sTn)N—

corresponding to (relatively) large T (and are known historically,
see ref. 6 and below).

3. Lagrange Inversion Formula and Logarithms of
General Algebraic Functions

The original and still most efficient method to derive expansions
of algebraic functions in terms of coefficients of equations they
satisfy is the use of Lagrange’s inversion formula. We use this
formula to derive the explicit series representation for sums of
logarithms (squares of logarithms) of all branches of an algebraic
function defined by a sparse polynomial. In the case of a trinomial
equation we get the master formula.

We use Lagrange’s formula in Birkeland representation (7). In
the most general case, we are looking at the root y of the equation

~y 2 v!f~y! 1 x0f0~y! 1 · · · 1 xnfn~y! 5 0 [5]

where f(y), f0(y), . . . , fn(y) are series convergent in the
neighborhood of v, and f(v) Þ 0, fi(v) Þ 0, i 5 0 . . . n. The
expansion of y near xi 5 0 : i 5 0 . . . n has the following form

y 5 v 1 O
a0,a1, . . . ,an

p Aa0,a1, . . . ,an

a0!a1! · · · an!
x0

a0x1
a1 · · · xn

an. [6]

In Eq. 6 the range of summation is over all non-negative ai :
i 5 0 . . . n, excluding a point ai 5 0 : i 5 0 . . . n. We use below
the following abbreviations:

a 5 a0 1 a1 1 . . . an; b 5 a1 1 2a2 1 . . . nan.

Lagrange’s formula give the expression for the coefficients
Aa0,a1, . . . ,an

in either of the following two forms:

Aa0,a1, . . . ,an
5 ~21!aDa21S f0

a0f1
a1 · · · fn

an

fa Dv
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Aa0,a1, . . . ,an
5

~21!a~a 2 1!!
2pi R

v

f0
a0f1

a1 · · · fn
an

fa~y 2 v!a dy.

In applications that we need, we actually sum over all roots v
of the corresponding initial (unperturbed) algebraic equation.

The most interesting applications arise from considering
powers yg of solutions of the sparse algebraic equation

yn 1 x1yn1 1 · · · 1 xmynm 2 1 5 0, [7]

considered as the perturbation of the cyclotomic equation yn 2
1 5 0 at xi 5 0 : i 5 1 . . . m. Then from the Lagrange’s formula
above we get

yg 5 1 1 gO
k51

` ~21!k

nk O
a11. . .an5k

Aa1, . . . ,am
x1

a1 · · · xm
am,

Aa1, . . . ,an
5

)h51
k21~g 1 n1a1 1 · · · 1 nmam 2 nh!

a1! · · · am!
.

Because a general solution of Eq. 7 is given by «y(«n1x1, . . . , «nmxm)
for «n 5 1, starting from a given solution y(x1, . . . , xm), we can sum
yk

g over all solutions yk : k 5 1, . . . , m of Eq. 7. This expression is
a very useful one (see below for the trinomial m 5 1 case), but
we are interested primarily in its specialization as g3 0. In this
case we get the following multivariant generalization of the
master formula:

1
2 O

k51

n

ln2~ykzn
2k! 5 O

a1 . . . am;b5nh

p ~21!h11

n~a 2 h!h

z
a!

a1! · · · am!
z

x1
a1 · · · xm

am

Sa
hD

. [8]

Here, as above, the summation excludes ai 5 0 : i 5 1 . . . m,
and a 5 a1 1 z z z 1 am, b 5 n1a1 1 z z z 1 nmam.

In the case of our primary interest, the trinomial equation

yn 2 T z ys 2 1 5 0, [9]

the expression for the sum of yg specializes to a relatively
simple formula. We will assume the ‘‘irreducible’’ case of (n,
s) 5 1, and denote by yk : k 5 1, . . . , n roots of Eq. 9 ordered
in the way that yk3 zn

k as T3 0 for zn
k 5 e2pikyn. Then we have

the first simple formula:

O
k51

n

~yizn
2k!g 5 2

g sinSpg

n D
p

z O
N50

` ~~21!n2sTn!N

Sg

n
1 NsDS2

g

n
1 ~n 2 s!NDS Nn

g

n
1 NsD

. [10]

Finally, specialization at g3 0 give the master formula that we
use below:

1
2 O

k51

n

ln2~xkzn
2k! 5 2

1
ns~n 2 s!

O
N51

` ~~21!n2sTn!N

SNn
NsDN2

. [11]

4. Trinomial Equations and Logarithms of Their Roots

The most general case of the Galois group of the generalized
hypergeometric equation with algebraic solutions only is that of
a symmetric group. We find the explicit realization of the action
of this group, and its extension, that provides generalized hyper-

geometric equation whose solution space is spanned by loga-
rithms of algebraic functions. An explicit realization of these
generalized hypergeometric equations is given by Cayley’s or
resolvent linear differential equation satisfied by all branches of
the solution of the trinomial algebraic equation. We had studied
this subject in detail in ref. 8 in connection with analytic and
numerical solution of sparse polynomial equations. Historical
notes on hypergeometric expansions of solutions of trinomial
equations (including the famous Lambert–Lagrange–Ramanu-
jan expansions), together with the remark that the Galois group
of the trinomial is symmetric can be found in ref. 8. A detailed
derivation of different generalized hypergeometric expansions of
solutions of trinomial algebraic equations is best dealt with by
Birkeland in his papers (7, 9). In these papers (especially the
latter), Birkeland looks also at the expansion of logarithms of
solutions of trinomials, but at a rather dull domain T3 `. By the
way, similar expansion of the logarithm can be found in Whit-
taker–Watson (6) where it is attributed to McClintock. Much
more interesting range of expansion is T3 0, that leads to rather
surprising identities starting from Eq. 11.

4.1. Consequences of the Master Formula. From the master
formula (Eq. 11), expressing sums of the ln2 of all branches of
trinomial algebraic functions, we can derive explicit expressions of
individual ln of branches in terms of full system of contiguous
generalized hypergeometric functions. This way we explicitly
exhibit the reducibility of the corresponding generalized hyper-
geometric equations. This explicit representation is the key for the
most generalized hypergeometric series representations of loga-
rithms of algebraic numbers.

The primary hypergeometric function is

f~z! 5 O
N50

` zn

SNn
NsD

,

and the (example of the) full system of contiguous hypergeo-
metric functions is

uz
i f~z! 5 O

N50

`

NiznYSNn
NsD , i 5 0, . . . , n 2 2, uz 5 z z

d
dz

.

Let us denote

fl~T! 5 2
nl11

s z ~n 2 s!
z O

N51

`

Nl
~21!~n2s!N z TnN

SNn
NsD

[12]

for l 5 22, 21, . . . , . We can rewrite Eq. 11 in these notations

O
i51

n

ln2~xizn
i ! 5 2 z f22~T!. [13]

Here, as above, xi are all roots of the trinomial equation

P~x! 5 xn 2 T z xs 2 1 5 0 [14]

(as functions of T), with the normalization of xiuT50 5 zn
2i 5

e22pi=21yn, i 5 1, . . . , n.
We are differentiating the main formula (Eq. 13) using the

derivative uT 5 T z dydT. To establish the main rules of the chain
differentiation in the algebraic function field K 5 C(T, xi(T)) (or
even Q(T, xi(T))), we notice that for r 5 r(x, T), we have

d
dT

~r! 5


x
~r! z x9 1



T
~r!, [15]

x9 5
x

P9~x!
mod P~x!, q 5

x9

x
5

1
P9~x!

mod P~x!. [16]

The first application of T z dydT to Eq. 13 gives
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O
i51

n

ln~xizn
i ! z T z

xi,T

xi
5 f21~T!, [17]

and the second application of T z dydT gives

O
i51

n

ln~xizn
i ! z T z

d
dT ST z

xi,T

xi
D1 O

i51

n

T2 z Sxi,T

xi
D2

5 f0~T!, [18]

etc. The general form of these equations is the following

O
i51

n

ln~xizn
i ! z Al~xi, T! 1 O

i51

n

Bl~xi, T! 5 fl~T! : l 5 21, 0, . . . . [19]

The recursion formulas connecting Al, Bl following from the
differentiation rules (Eqs. 15 and 16):

Al11 5 T z
d

dT
~Al!, Bl11 5 T z

d
dT

~Bl! 1 Al z T z Sxi,T

xi
D . [20]

4.2. Explicit Representation of Logarithms. We can built
linear combinations of successive differentiations of the master
formula to express ln(xizn

i ) as linear combinations of n 2 1
generalized hypergeometric functions contiguous with the ‘‘pri-
mary’’ function F0(z) 5 ¥N51

` zNy(Ns
Nn). See ref. 10 for the proper

definition of a full system of contiguous functions—basically a
maximal system of functions having the same monodromy group.
The canonical family of contiguous functions we consider here is
defined simply by Fi(z) 5 ¥N51

` NizNy(Ns
Nn) for i 5 21, 0, 1, . . . . It

is easy to see that the functions Fi(z) : i 5 21, . . . , n 2 2 are
linearly dependent over Q(z), thus to have simpler identities (with
a polynomial of N in the numerator at the expense of the increase
in the sizes of coefficients), we choose as the canonical complete
system of contiguous functions the following one:

Fi~z! 5 O
N51

` NizN

SNn
NsD

, i 5 0, . . . , n 2 2.

As before, we consider an irreducible case of (n, s) 5 1. The
algebra is made easy by considering the algebraic extension Q(T,
x) of Q(T) for the equation P(x) 5 for P(x) 5 xn 2 T z x 2 1. The
differentiation rules for elements of this extensions are very
simple: first define x9 5 dxydT 5 xyP9(x) mod P(x), and then apply
the chain rule: drydT 5 (ryx) z x9 1 (ryT). To solve the system
of equations on ln(xizn

i ), we need a simple symbolic expression for
the solution of the system of Vandermonde equations. One
obtains it readily with the help of the Lagrange interpolation
polynomial L(y, x), defined as

L~y, x! 5
P~y!

P9~x! z ~y 2 x!
mod P~x!.

Writing L(y, x) as L(y, x) 5 ¥j51
n Lj(x)yj21, we form matrices from

the coefficients of Al(x), Bl(x) and L(y, x) as follows: L 5 (Ljk)j,k51
n ;

Ljk 5 Lj(xk); A 5 (Ajk) : j 5 1 . . . n, k 5 0, 2, . . . n 2 1; for Al(x)
5 ¥j51

n Ajlxj21, and B 5 (Bjk) : j 5 1 . . . n, k 5 0, 2, . . . n 2 1; for
Bl(x) 5 ¥j51

n Bjlxj21. Because (n, s) 5 1, the matrix A from
Mn(Q(T)) is nonsingular, and we can define the matrix C as C 5
A21 z L, to obtain the expression

ln~xkzn
k! 5 O

m51

n

CmkFm 2 O
i51

n O
j51

n

~B z C!jkxi
j21.

Taking into account the properties of the Lagrange interpolation
polynomials and the simple formulas for the power-sum sym-
metric functions of xi, we have the final expressions in the form:

ln~xizn
i ! 5 O

m52

n

cm~xi,T! z Fm22~T! 2 con~xi,T!,

with cm(x, T) 5 ¥l51
n (A21)mlLl(x), and con(x, T) 5 ¥l51

n Ql(T) z
Ll(x), and Ql(T) 5 (B z A21)1ln 1 (B z A21)(n2s11)l(n 2 s)T.

It is easy to see that the coefficients cm(x, T) and con(x, T) are
rational functions from the algebraic extension Q(x, T)yQ(T)
resulting from P(x) 5 0 algebraic equations. Simple scaling
arguments immediately imply that cm, con depend on T, xi in a
simpler fashion. Because n and s are relatively prime (and without
the loss of generality, by the symmetry x3 1yx, one can assume
that 2s , n), we have two positive integers a, b such that bn 2
a(n 2 s) 5 1. Then cm(x, T), con(x, T) are actually polynomials in
t 5 x z Ta of degrees at most n 2 1, with coefficients from Q(Tn).
This shows that the new identities represent ln (xizn

i ) as power
series in Tn with coefficients depending algebraically on ti 5 xi z Ta.
The general expression for each individual ln (xizn

i ) thus has the
form:

ln~xizn
i ! 5 O

N51

` R~Tn, xiTa, N!~~21!n2sTn!N

SNn
NsD

1 cons~Tn, xiTa!,

for R(Tn, xiTa, N)—polynomial with rational coefficients of
degree at most n 2 2 in N and at most n 2 1 in xiTa, and
rational in Tn.

4.3. Multiplicative Relations. Because all linear relations
with algebraic coefficients among logarithms are reducible to
linear relations with rational (integer) coefficients, it means that
different classes of expressions of logarithms of individual alge-
braic numbers (such as p or ln 2), based on the master formula,
are derived from multiplicative relations between the roots of the
trinomial equations. Similarly, expressions of logarithms of roots
of arbitrary polynomial equations in terms of multivariable
generalized hypergeometric functions, bring the important ques-
tion of the nontrivial multiplicative relations between the roots of
the algebraic equations. Galois group gives a good vehicle to
establish (non-)existence of such relations. If, say, we restrict
ourselves to the representation of logarithms of numbers from a
multiplicative group M(S) of rational numbers, generated by
primes from the set S, then we are trying to determine the rank
of the Abelian group MR(xi) of all multiplicative relations:

P
i51

n

xi
Ni [ M~S!, Ni [ Z : i 5 1, . . . , n.

[The vectors (Ni) in these relations form a group because a
product of two such multiplicative relations is yet another rela-
tion.] We leave the subject of explicit determination of the rank
of MR(xi) for another publication, and concentrate only on
simplest case of S , {1, 2, 3} corresponding to three logarithms:
p, ln 2, ln 3. To make the setting over Z(Q), we have assume that
Tn is a rational number, and within the radius of convergence of
the hypergeometric function - uTnu , nnyss(n 2 s)n2s. In general,
we have to distinguish between the cases S 5 {1, p} and uSu . 2,
because when S contains two primes (.1), there are infinitely
many examples of trinomial equations xn 2 Txs 2 1 5 0, giving
rise to a positive rank of MR(xi) and a representation of a linear
combination of ln p for p [ S as a convergent series of the
above-mentioned form with a rational number Tn (and rational
coefficients of a numerator polynomial R(N)). On the other hand,
when uSu 5 1 (like formulas involving only p or only ln 2), then
for every n there are only finitely many distinct (not reducible to
each other) trinomials of degree n, with rational Tn and conver-
gent series, representing ln p for S 5 p (or representing p for S 5
{1}). This can be proved by an asymptotic analysis of the
resolvents of the Galois groups of the trinomial equations. Thus
we can classify all representations of a single logarithm of a
rational (algebraic) number (like p) as generalized hypergeomet-
ric series with (Ns

Nn) in the denominator and (pyq)N z R(N) in the
numerator for a polynomial R(N). A representative list of such
identities is shown below for small values of n.
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5. The Hierarchy of Reducible Identities

So far we have covered the ‘‘irreducible’’ hypergeometric series
¥N51

` zNy(Ns
Nn), corresponding to the trinomial xn 2 T z xs 2 1 5 0,

when (n, s) 5 1. Whenever (n, s) . 1, the root of xn 2 T z xs 2 1 5
0 are obviously multiplicatively dependent. The corresponding
hypergeometric function¥N51

` zNy(Ns
Nn) satisfies the hypergeomet-

ric equation that is a lift of an irreducible hypergeometric
equation via the Kummer mapping z 3 zd, d 5 gcd(n, s). Such
equations and their solutions are known as Kummer reducible.
We show now how reducible equations are handled in the same
framework as irreducible ones. We also show that any identity
from the irreducible case can be lifted to the whole family of
reducible series arising from this one (though not in an entirely
trivial fashion). In this respect (and only in this) there is an infinite
series of identities whose rate of convergence increases ad infi-
num. However, there is a little sense in using these series for rapid
computations of p or other constants, because the complexity of
computations with these series stay the same.

To deal with a reducible case, we start with an irreducible one,
corresponding to integers n and s, n $ s $ 0 and (n, s) 5 1. As
before we look at roots xi 5 xi(T) of xn 2 Txs 2 1 5 0 for T within
the area of convergence: uTnu , nny(ss z (n 2 s)n2s). There are
obvious transformation formulas for xi(T) as T3 T z zn

i . We can
write this formula in the form xi(Tzn

j ) 5 xi2j(T) z zn
2j, where i 2 j

is defined in {1, . . . , n} mod n.
Let us chose for the degree of reducibility an integer m, m $

2. We rely on our master formula that we apply for m values of
T : T z znm

j : j 5 0, . . . , m 2 1. Choosing as before the order of roots
xi(T) such that xi(T)3 zn

2j as T3 0, we simply add up m copies
of the master formula:

O
j50

m21 O
i51

n

ln2~xi~Tznm
j !zn

2i! 5 2
2m

ns~n 2 s!
O

N51

` ~~21!n2sTn!mN

N2SNnm
NsmD .

[21]

Note that the algebraic equation we are dealing with is not xnm 2
Tmxsm 2 1 5 0, but rather )j51

m21 (xn 2 Tznm
j z xs 2 1) 5 0. As in

the calculations above, we differentiate Eq. 21, applying uT 5
T z dydT. The discussion is identically to the one above, if one
replaces the set {xi 5 xi(T), n, s} in the expression above by
{xi(Tznm

j ), nm, sm}. We get the expression

O
j50

m21 O
i51

n

ln~xi~Tznm
j !zn

2i!Al~xi~Tznm
j !, T! 1 O

j50

m21 O
i51

n

Bl~xi~Tznm
j !, T!

5 2
nl11m3

s~n 2 s! O
N51

`

~Nm!l
~21!~n2s!mNTnmN

SNnm
NsmD , [22]

with the same recursion formulas for Al, Bl as above. We
supplement these formulas (Eq. 22) for l 5 21, 0, . . . by m
obvious identities ¥i51

n ln(xi(Tznm
j )zn

2i) 5 0 for j 5 0, . . . , m 2 1.
To express the logarithms in terms of functions

Fl~z! 5 O
N51

` NkzN

SNnm
NsmD : k 5 0, 1, . . . ,

we may restrict k to the range 0 # k , m z (n 2 1), and obtain
the general expression of the form:

ln~xi~Tz nm
j !zn

2i! 5 O
k50

m~n21!21

Fk~~21!~n2s!mTnm!

z Ck~xi~Tznm
j !, T! 2 Con~xi~Tznm

j !, T! : [23]

i 5 1, . . . , n; j 5 0, . . . , m 2 1. Here Ck(xi(Tznm
j ), T) and

Con(xi(Tznm
j ), T) are polynomials in Tnm and in xi(Tznm

j ) z Ta

(with bn 2 a(n 2 s) 5 1).

The existence conditions of the identities for logarithms of
rational number (p including) are the same as above—they are
the conditions of the existence of the multiplicative relations on
roots xa of

Pn,m~x! 5 P
j50

m21

~xn 2 Tz nm
j xs 2 1!,

in addition to the requirement for Tmn to be rational within the
radius of convergence: uTnu , nny(ss z (n 2 s)n2s).

Consequently, if there is an identity for logarithms of rational
numbers in the case of (n, s, T), then the identity continues to
exists in all reducible cases (nm, sm, Tm) : m $ 2. We give below
a rather simple list of such identities arising from a classical
expression for p (that one gets from arcsin(xy2) power series
expansion).

6. Some Identities

We present here some interesting identities for p, ln 2 (or ln 3)
that immediately follow from our explicit expressions and the
multiplicative relations between the roots of the corresponding
trinomial equations. This is not a complete list, but is rather
representative in the ‘‘irreducible’’ case, because most important
classes of the multiplicative relations in the case of S 5 {1, 2, 3}
are presented here.

A) Identities:

O
n50

`

Un
P1~n!

S3n
n D 5 C :

1) U 5 8y3; P1(n) 5 49n 1 1; C 5 81 1 16p=3; 2) U 5
8y3; P1(n) 5 2245n 1 338; C 5 162 2 6p=3 2 18 ln 3;
3) U 5 227y16; P1(n) 5 290n 2 177; C 5 64 ln 2 2 120;
4) U 5 28y9; P1(n) 5 3575n 1 1999; C 5 1215 2 432 ln 3;
5) U 5 1y2; P1(n) 5 50n 2 6; C 5 p (Modified Gosper’s
identity); 6) U 5 1y2; P1(n) 5 275n 2 158; C 5 6 ln 2 2 135;
7) U 5 21y4; P1(n) 5 17 2 728n; C 5 24 ln 2 1 54;

B) Identities:

O
n50

`

Un
P1~n!~2n!!2~3n!!

~6n!!n!
5 C :

1) U 5 8; P1(n) 5 350n 2 17; C 5 15p=2 1 27; 2) U 5
1y36; P1(n) 5 1173874n 2 202577; C 5 720 ln 2 2 202176;

C) Identities:

O
n51

`

Un
P2~n!

S4n
n D 5 C :

1) U 5 8; P2(n) 5 520 1 6240n 2 430n2; C 5 245p 2
1164; 2) U 5 216y3; P2(n) 5 2710 1 240n 2 2150n2; C 5
15 ln 3 1 388; 3) U 5 3; P2(n) 5 480 2 15215n 1 7175n2;
C 5 40p=3 1 1872; 4) U 5 9y8; P2(n) 5 25692 2 6335n 1
5415n2; C 5 576 ln 2 2 288p=3 2 324; 5) U 5 9y8; P2(n)
5 27514 2 1145n 2 18050n2; C 5 576 ln 2 2 1008p=3 2
7587; 6) U 5 21; P2(n) 5 51406 2 196341n 1 246323n2;
C 5 2720 ln 2 2 7278; 7) U 5 21y8; P2(n) 5 113930 2
482295n 1 769825n2; C 5 2880 ln 2 2 9354;

D) Identities:

O
n51

`

Un
P3~n!

S5n
2nD

5 C :

1) U 5 21y2; P3(n) 5 3028 1 482n 2 77362n2 1 89012n3;
C 5 240 ln 2 1 15p 2 528; 2) U 5 21y2; P3(n) 5 32132 2
168944n 1 32425n2 1 117623n3; C 5 1080 ln 2 1 99p 2 882;
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E) Identities for ¥ xny(n
5n):

O
n51

`

Un
P3~n!

S5n
n D 5 C :

1) U 5 21; P3(n) 5 1556188 2 9734011n 1 2663836n2 2
17091891n3; C 5 29240 ln 2 2 202436; 2) U 5 1y2; P3(n) 5
1556188 2 9734011n 1 2663836n2 2 17091891n3; C 5 29240 ln 2
2 202436; 3) U 5 21y16; P3(n) 5 23810109 1 48164564n 2
132390804n2 1 126626274n3; C 5 273920 ln 2 2 382391;

F) Known identity:

O
n51

` P5~n!

2nS7n
2nD

5 220379280 2 740025p;

P5(n) 5 265979888 1 1181293644n 2 6191776770n2 1
17657815350n3 2 18752083422n4 1 5314039086n5.

G) New identity:

O
n51

` P6~n!

S8n
n D 5 27341293190 2 1150349200pÎ3;

P6(n) 5 79371060090 1 148314047723n 1
1480383303223n2 1 5565398860353n3 2 2545104522979n4

1 17229124728424n5 2 8645263491354n6.
H) Modified Gosper’s identity:

O
n51

` S2n
n D

S4n
n D2 ~9576n3 2 10612n2 1 2696n 2 292! 5 29p 2 100;

The list of progressively faster convergent ‘‘trivial 5 reduc-
ible’’ identities for p and ¥ xLny(Ln

2Ln):

O
n50

` 2n11

S2n
n D 5 p 1 4;

O
n50

` 22n

S4n
2nD

~12n! 5 3p 1 8;

O
n50

` 23n

S6n
3nD

~28 1 24n 2 126n2! 5 215p 2 52;

O
n50

` 24n

S8n
4nD

~216 1 424n 2 928n2 1 1920n3! 5 105p 1 304;

O
n50

` 25n

S10n
5n D

~2228 1 2770n 2 19600n2 1 32750n3 2 38750n4!

5 2945p 2 3156.

7. Some Diophantine Applications

One can convert rapidly convergent series given above into
sequences of rational approximations to corresponding loga-
rithms these series represent. For this one should use Padé
approximations of the second kind to generalized hypergeometric
functions described in detail in ref. 11. As an example we use the
case Eq. 3 on the Schwarz list, with contiguous hypergeometric
functions representing both p and ln 2.

In this case we take a function

f~z! 5 O
N50

`

zNYS3N
N D ,

satisfying second-order inhomogeneous linear differential equa-
tion over Q(z) arising from the trinomial algebraic equation x3 2
Tx 2 1 5 0 with the identification z 5 T3, and z 5 1

2
. The system

of Padé approximations to generalized hypergeometric functions
was explicitly constructed in section 5 of ref. 4. This system of
dense rational approximations now bounds the measure of linear
independence of p, ln 2 (see, e.g. lemma 2.5 in ref. 4):

uH0 1 H1p 1 H2 ln 2u . H212.6089. . .

for sufficiently large H, H 5 max{uH0u, uH1u, uH2u}.
This result is based on contiguous identities 5) and 6) from

the list A) in section 6:

O
N50

` 50n 2 6

2NS3N
N D 5 p, O

N50

` 275n 2 158

2NS3N
N D 5 6 ln 2 2 135.

There are interesting polylogarithmic extensions of all identi-
ties above, derived by integrating the master formula. For
example, there is a natural counterpart to pair 5)-6) in A),
section 6 of cubic trinomial identities given above, that ex-
presses p and ln 2. This is a tri-logarithm identity involving the
Catalan constant G and z(3):

23 O
N51

` 1

S3N
N DN32N

5 23Gp 1
p2 ln~2!

8
2

ln3~2!

2
1

99
16

z~3!

Not-trivial multiplicative relations between the roots bring
in other interesting diophantine approximations. The simplest
pair of formulas for the same rational x, representing p in two
different ways—a nontrivial multiplicative relation for S 5
1—is the following addition to the list D) of section 6.

O
n51

` ~13 1 675n 2 242n2!5n

S4n
n D

5 p~1005 1 144Î5 1 2Î5 2 12Î5 2 2Î5!

O
n51

` ~246 2 1557n 1 363n2!5n

S4n
n D
5 p~450 1 108Î5 1 2Î5 2 12Î5 2 2Î5!.

With great pleasure we acknowledge illuminating inputs from R.
Askey and W. Gosper.
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